But people and the food industry don't have balance. Wheat is in many foods and so is gluten. The hybridized wheat is also whole wheat. Whole wheat may be slightly better for you than processed wheat but just because its better for you doesn't mean it's good for you.
Here is a link for further reading and how we got the wheat that we have today.
http://spiritualityhealth.com/articles/wheat-belly
The Begetting of Modern Wheat
Back in Neolithic times, einkorn was mated with another wheat and begat emmer, another wheat found in ancient tombs and still available in modern health food stores. (In fact, emmer is prized in places like Tuscany, where it’s raised under the name farro.) A big difference between einkorn and its progeny is that einkorn has 14 chromosomes and emmer has 28. Then emmer was mated with goat grass, which has 14 chromosomes and, more important, unique glutenin genes. The progeny of emmer and goat grass was essentially modern wheat, which has 42 chromosones and the gluten that makes modern bread chewy, elastic, and shapely.
In early times, plant hybridization was hit or miss and very gradual, depending on local farmers and local conditions. In the nineteenth century, plant genealogy and sophisticated breeding techniques began earning serious attention; nevertheless, modern wheat remained essentially the same until the mid-twentieth century, when the International Maize and Wheat Improvement Center (IMWIC) and other wheat research centers set out to combat world hunger. Over the following decades, thousands of new varieties were created to dramatically increase yields. According to World Wheat Facts and Trends, yields in China, now the world’s largest producer, have increased from eight to sixty-five bushels per acre. Some of these advances are attributable to nitrogen-rich fertilizers but also to the development of high-yielding dwarf wheat, with a large head and shorter, stouter straw, sturdy enough to support the extra weight without buckling. Some recent estimates have dwarf and semi-dwarf wheat comprising as much as 99 percent of all wheat worldwide.
According to Davis’s research, personal consumption of wheat has grown along with crop yields. For example, the average American now eats 133 pounds of wheat per year, 26 pounds more than in 1970. Davis again: “In parallel with increased consumption, we also have the silent replacement of wheat from four-foot-tall triticum aestivum with high-yield dwarf strains and new gluten structures not previously consumed by humans.”
Our Experiment in Mystery Wheat
As Davis writes, “The oversight in the flurry of breeding activity, such as that conducted at IMWIC, was that, despite dramatic changes in the genetic makeup of wheat and other crops, no animal or human safety testing was conducted on the new genetic strains that were created. So intent were the efforts to increase yield, so confident were plant geneticists that hybridization yielded safe products for human consumption, so urgent was the cause of world hunger, that these products of agricultural research were released into the food supply without human safety concerns being part of the equation.”
A wheat hybrid, for example, retains approximately 95 percent of its parent’s proteins, while the other 5 percent of proteins are new and may have novel characteristics. Gluten proteins seem especially susceptible to structural changes. One hybridization experiment cited in Wheat Belly created 14 new gluten proteins. Remember, these are individual experiments involving only two parents; over the past 60 years, many thousand such hybridizations have accrued in your breakfast bagel. If Davis is right, such relentless hybridization created almost infinite opportunities for wheat to go wrong.
http://spiritualityhealth.com/articles/wheat-belly