Fatty Acid Synthesis: A Machine with “High Degree of Architectural Complexity” 04/19/2007
As Bruce Alberts said in 1998, the biology of the future was going to be the study of molecular machines: “the entire cell can be viewed as a factory that contains an elaborate network of interlocking assembly lines, each of which is composed of a set of large protein machines.”1 One of those machines is like a mini-factory in itself. It’s called fatty acid synthase (FAS). Three Yale researchers just published the most detailed description of this machine in the journal Cell.2 (cf. last year’s headline, 03/06/2006). They remarked that its most striking feature is the “high degree of architectural complexity” – some 48 active sites, complete with moving parts, in a particle 27 billionths of a meter high and 23 billionths of a meter wide.
Despite our aversion to fat, fatty acids are essential to life. It’s when fat production goes awry that you can become fat. The authors explain:
“Fatty acids are key components of the cell, and their synthesis is essential for all organisms except archaea. They are major constituents of cellular membranes and are used for posttranslational protein modifications that are functionally important. Saturated fatty acids are the main stores of chemical energy in organisms. Deregulation of fatty acid synthesis affects many cellular functions and may result in aberrant mitosis, cancer, and obesity.”
The chemical steps for building fatty acids appear in the simplest cells and remain essentially unchanged up to the most complex organisms, although the machinery differs widely between plants, animals and bacteria. In plants, for instance, the steps are performed by separate enzymes. In animals, a two-part machine does the work. Which organism has one of the most elaborate fatty-acid machines of all? The surprising answer: fungi. The researchers imaged the fatty acid synthase enzymes of yeast and, despite their academic restraint, were clearly excited as the details came into focus:
“Perhaps the most striking feature of fungal FAS is its high degree of architectural complexity, in which 48 functional centers exist in a single ... particle. Detailed structural information is essential for delineating how this complex particle coordinates the reactions involved in many steps of synthesis of fatty acids.... The six alpha subunits form a central wheel in the assembly, and the beta subunits form domes on the top and bottom of the wheel, creating six reaction chambers within which each ACP can reach the six active sites through surprisingly modest movements. This structure now provides a complete framework for understanding the structural basis of this macromolecular machine’s important function. “
Calling it an “elegant mechanism,” they proudly unveiled a new model that tells the secret inside: a swinging arm delivers parts to eight different reaction centers in a precise sequence.
Their dazzling color diagrams are, unfortunately, copyrighted inside a technical journal, but a Google image search shows one reasonable facsimile of the overall shape at a Swiss website: click here. Some of the protein parts provide structural support for the delicate moving parts inside. Taking the structure apart, it looks something like a wagon wheel with tetrahedron-shaped hubcaps above and below. Picture a horizontal wagon wheel with three spokes, bisecting the equator of the structure. Now put the hubcaps over the top and bottom axles. The interior gets divided up into six compartments (“reaction chambers”) where the magic takes place.
In each reaction chamber, eight active sites are positioned on the walls at widely separated angles from the center. Spaced nearly equidistant between them all is a pivot point, and attached to it by a hinge is a lever arm. This lever arm, called ACP, is just the right length to reach all of the reaction sites. From a tunnel on the exterior, the first component arrives and is fastened to the ACP arm (priming). The arm then swings over to another active site to pick up the next part, then cycles through the next six reaction sites that each do their part to add ingredients to the growing fatty acid chain (elongation). The machine cycles through the elongation step multiple times, adding carbons to the growing fatty acid. When the chain reaches its proper length (16-18 carbons, depending on the fatty acid needed), it is sent to a final active site that stops the cycle (termination) and delivers the product through an exit channel to the cytoplasm.
The ACP hinged arm, then, is the key to the system. Imagine a life-size automated factory with a roughly spherical interior. Its task is to build a chain of parts in a precise order. The first ingredient comes through a shaft and is attached to the robotic arm in the center. The arm then follows a pre-programmed sequence that holds out the product to eight different machines on the walls that add their part to the product. The final operation of the arm delivers the product to an exit channel. In a cell, though, how does this arm actually move? The answer: electricity.
Yes, folks, yeast cells contain actual electrical machines. Don’t visualize wires of flowing current; instead, picture active sites with concentrations of positive and negative charges in precise amounts. How does the lever arm use this electrical system? Owing to the specific kinds of amino acids used, each active site has a net positive charge, while the ACP lever arm has a negative charge. Each time a part is added to the product, it changes the overall charge distribution and makes the arm swing over to the next position. Thus, a blind structure made out of amino acids follows a cyclic pattern that builds up a specific product molecule one carbon at a time, and automatically delivers it when complete. After delivery, the system is automatically reset for the next round. Clearly, the precision of charge on each active site is critical to the function of the machine.3, 4
Now that we have described one reaction chamber, step back and see that the yeast FAS machine has six such chambers working independently and simultaneously. Another surprise is that the lever arm inside must be activated from the outside during assembly of the machine by a structure (PPT) on the exterior wall before it can work. There’s a reason for this, too:
“The crystal structure of yeast FAS reveals that this large, macromolecular assembly functions as a six-chambered reactor for fatty acid synthesis. Each of the six chambers functions independently and has in its chamber wall all of the catalytic units required for fatty acid priming, elongation, and termination, while one substrate-shuttling component, ACP, is located inside each chamber and functions like a swinging arm. Surprisingly, however, the step at which the reactor is activated must occur before the complete assembly of the particle since the PPT domain that attaches the pantetheine arm to ACP lies outside the assembly, inaccessible to ACP that lies inside. Remarkably, the architectural complexity of the FAS particle results in the simplicity of the reaction mechanisms for fatty acid synthesis in fungi.”
Maybe the activation step is a quality-control step, to ensure the system doesn’t cause trouble in the cytoplasm before the machinery is completely assembled.
The authors did not mention how fast the synthesis takes place. But if it’s anything like the other machinery in the cell, you can bet the FAS machine cranks out its products swiftly and efficiently, and life goes on, one molecule at a time. Baking a cake with yeast will never seem the same again.
--------------------------------------------------------------------------------
1Alberts, Bruce (President, National Academy of Sciences ) “The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists”, ScienceDirect, Available online 29 September 2000.
2Lomakin, Xiong and Steitz, “The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together,” Cell, Volume 129, Issue 2, 20 April 2007, Pages 319-332.
3In addition to electrical charges, some amino acids have side chains that attract or repel water. These hydrophilic and hydrophobic side chains also contribute to the force fields that cause the conformational changes in the enzyme.
4The diagrams in the paper show the details of each active site. To the uninitiated, enzyme models appear like random balls of putty stuck together, but humans should not impose their propensity for straight lines and angles on the world of molecules. The shape and folds of the structure are critical to the function because they control the charge distribution in the vicinity. The active sites are recessed within tunnels. The ACP lever arm tip is guided by charge into these tunnels where ingredients are “snapped on” to the molecule through precise chemical reactions. Each reaction changes the charge distribution, leading to the next stage of the cycle.
More “Candy” Found in Junk DNA 04/24/2007
Powerful regulators that play a crucial role – this is how non-coding sections of DNA are now being described. A story in Science Daily says that these regions of “junk DNA” once dismissed as “gene deserts” actually orchestrate the expression of genes during development.
In a related paper in PNAS,1 researchers found regulatory roles for many conserved noncoding elements (CNEs). “We identify nearly 15,000 conserved sites that likely serve as insulators, and we show that nearby genes separated by predicted CTCF sites2 show markedly reduced correlation in gene expression,” they said. “These sites may thus partition the human genome into domains of expression.” They found one family that might have a “broad role” for gene expression, and other “striking examples of novel functional elements.”
This realization is opening eyes to a new realm of genetic marvels. “Right now it’s like being a kid in a candy warehouse,” said one geneticist. Others who looked at transposons and jumping genes as nuisances that were “messing things up” now see them as useful. Evolutionists are invoking the E word in various ways. Transposons might be a “major vehicle for evolutionary novelty,” said one, while another remarked about emerging new view of junk DNA, “It’s funny how quickly the field is now evolving.”
--------------------------------------------------------------------------------
1Xie et al, “Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites,” Proceedings of the National Academy of Sciences USA, 10.1073/pnas.0701811104, published online before print April 18, 2007.
2From the above paper, “CTCF, a protein containing 11 zinc-finger domains, is a major factor implicated in vertebrate insulator activities. An insulator is a DNA sequence element that prevents a regulatory protein binding to the control region of one gene from influencing the transcription of neighboring genes. When placed between an enhancer and a promoter, an insulator can block the interaction between the two. Several dozen insulator sites have been characterized, and almost all have been shown to contain CTCF binding sites. In some cases, the CTCF site has been directly shown to be both necessary and sufficient for enhancer blocking activities in heterologous settings. The known CTCF sites show considerable sequence variation, and no clear consensus sequence has been derived.”
It’s not funny. For decades, Darwinian preconceptions have held back a promising field of genetic research with their falsified notion that most of the genome is composed of evolutionary leftovers. Now that we see the design that was there all along, can we get on with what science should have been doing? Away with this new plot line that junk DNA is a source of “evolutionary novelty.” Darwinians, you have been exposed as usurpers. Get out of the way. The field is not evolving. Intelligent design is taking back its rights.
As Bruce Alberts said in 1998, the biology of the future was going to be the study of molecular machines: “the entire cell can be viewed as a factory that contains an elaborate network of interlocking assembly lines, each of which is composed of a set of large protein machines.”1 One of those machines is like a mini-factory in itself. It’s called fatty acid synthase (FAS). Three Yale researchers just published the most detailed description of this machine in the journal Cell.2 (cf. last year’s headline, 03/06/2006). They remarked that its most striking feature is the “high degree of architectural complexity” – some 48 active sites, complete with moving parts, in a particle 27 billionths of a meter high and 23 billionths of a meter wide.
Despite our aversion to fat, fatty acids are essential to life. It’s when fat production goes awry that you can become fat. The authors explain:
“Fatty acids are key components of the cell, and their synthesis is essential for all organisms except archaea. They are major constituents of cellular membranes and are used for posttranslational protein modifications that are functionally important. Saturated fatty acids are the main stores of chemical energy in organisms. Deregulation of fatty acid synthesis affects many cellular functions and may result in aberrant mitosis, cancer, and obesity.”
The chemical steps for building fatty acids appear in the simplest cells and remain essentially unchanged up to the most complex organisms, although the machinery differs widely between plants, animals and bacteria. In plants, for instance, the steps are performed by separate enzymes. In animals, a two-part machine does the work. Which organism has one of the most elaborate fatty-acid machines of all? The surprising answer: fungi. The researchers imaged the fatty acid synthase enzymes of yeast and, despite their academic restraint, were clearly excited as the details came into focus:
“Perhaps the most striking feature of fungal FAS is its high degree of architectural complexity, in which 48 functional centers exist in a single ... particle. Detailed structural information is essential for delineating how this complex particle coordinates the reactions involved in many steps of synthesis of fatty acids.... The six alpha subunits form a central wheel in the assembly, and the beta subunits form domes on the top and bottom of the wheel, creating six reaction chambers within which each ACP can reach the six active sites through surprisingly modest movements. This structure now provides a complete framework for understanding the structural basis of this macromolecular machine’s important function. “
Calling it an “elegant mechanism,” they proudly unveiled a new model that tells the secret inside: a swinging arm delivers parts to eight different reaction centers in a precise sequence.
Their dazzling color diagrams are, unfortunately, copyrighted inside a technical journal, but a Google image search shows one reasonable facsimile of the overall shape at a Swiss website: click here. Some of the protein parts provide structural support for the delicate moving parts inside. Taking the structure apart, it looks something like a wagon wheel with tetrahedron-shaped hubcaps above and below. Picture a horizontal wagon wheel with three spokes, bisecting the equator of the structure. Now put the hubcaps over the top and bottom axles. The interior gets divided up into six compartments (“reaction chambers”) where the magic takes place.
In each reaction chamber, eight active sites are positioned on the walls at widely separated angles from the center. Spaced nearly equidistant between them all is a pivot point, and attached to it by a hinge is a lever arm. This lever arm, called ACP, is just the right length to reach all of the reaction sites. From a tunnel on the exterior, the first component arrives and is fastened to the ACP arm (priming). The arm then swings over to another active site to pick up the next part, then cycles through the next six reaction sites that each do their part to add ingredients to the growing fatty acid chain (elongation). The machine cycles through the elongation step multiple times, adding carbons to the growing fatty acid. When the chain reaches its proper length (16-18 carbons, depending on the fatty acid needed), it is sent to a final active site that stops the cycle (termination) and delivers the product through an exit channel to the cytoplasm.
The ACP hinged arm, then, is the key to the system. Imagine a life-size automated factory with a roughly spherical interior. Its task is to build a chain of parts in a precise order. The first ingredient comes through a shaft and is attached to the robotic arm in the center. The arm then follows a pre-programmed sequence that holds out the product to eight different machines on the walls that add their part to the product. The final operation of the arm delivers the product to an exit channel. In a cell, though, how does this arm actually move? The answer: electricity.
Yes, folks, yeast cells contain actual electrical machines. Don’t visualize wires of flowing current; instead, picture active sites with concentrations of positive and negative charges in precise amounts. How does the lever arm use this electrical system? Owing to the specific kinds of amino acids used, each active site has a net positive charge, while the ACP lever arm has a negative charge. Each time a part is added to the product, it changes the overall charge distribution and makes the arm swing over to the next position. Thus, a blind structure made out of amino acids follows a cyclic pattern that builds up a specific product molecule one carbon at a time, and automatically delivers it when complete. After delivery, the system is automatically reset for the next round. Clearly, the precision of charge on each active site is critical to the function of the machine.3, 4
Now that we have described one reaction chamber, step back and see that the yeast FAS machine has six such chambers working independently and simultaneously. Another surprise is that the lever arm inside must be activated from the outside during assembly of the machine by a structure (PPT) on the exterior wall before it can work. There’s a reason for this, too:
“The crystal structure of yeast FAS reveals that this large, macromolecular assembly functions as a six-chambered reactor for fatty acid synthesis. Each of the six chambers functions independently and has in its chamber wall all of the catalytic units required for fatty acid priming, elongation, and termination, while one substrate-shuttling component, ACP, is located inside each chamber and functions like a swinging arm. Surprisingly, however, the step at which the reactor is activated must occur before the complete assembly of the particle since the PPT domain that attaches the pantetheine arm to ACP lies outside the assembly, inaccessible to ACP that lies inside. Remarkably, the architectural complexity of the FAS particle results in the simplicity of the reaction mechanisms for fatty acid synthesis in fungi.”
Maybe the activation step is a quality-control step, to ensure the system doesn’t cause trouble in the cytoplasm before the machinery is completely assembled.
The authors did not mention how fast the synthesis takes place. But if it’s anything like the other machinery in the cell, you can bet the FAS machine cranks out its products swiftly and efficiently, and life goes on, one molecule at a time. Baking a cake with yeast will never seem the same again.
--------------------------------------------------------------------------------
1Alberts, Bruce (President, National Academy of Sciences ) “The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists”, ScienceDirect, Available online 29 September 2000.
2Lomakin, Xiong and Steitz, “The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together,” Cell, Volume 129, Issue 2, 20 April 2007, Pages 319-332.
3In addition to electrical charges, some amino acids have side chains that attract or repel water. These hydrophilic and hydrophobic side chains also contribute to the force fields that cause the conformational changes in the enzyme.
4The diagrams in the paper show the details of each active site. To the uninitiated, enzyme models appear like random balls of putty stuck together, but humans should not impose their propensity for straight lines and angles on the world of molecules. The shape and folds of the structure are critical to the function because they control the charge distribution in the vicinity. The active sites are recessed within tunnels. The ACP lever arm tip is guided by charge into these tunnels where ingredients are “snapped on” to the molecule through precise chemical reactions. Each reaction changes the charge distribution, leading to the next stage of the cycle.
More “Candy” Found in Junk DNA 04/24/2007
Powerful regulators that play a crucial role – this is how non-coding sections of DNA are now being described. A story in Science Daily says that these regions of “junk DNA” once dismissed as “gene deserts” actually orchestrate the expression of genes during development.
In a related paper in PNAS,1 researchers found regulatory roles for many conserved noncoding elements (CNEs). “We identify nearly 15,000 conserved sites that likely serve as insulators, and we show that nearby genes separated by predicted CTCF sites2 show markedly reduced correlation in gene expression,” they said. “These sites may thus partition the human genome into domains of expression.” They found one family that might have a “broad role” for gene expression, and other “striking examples of novel functional elements.”
This realization is opening eyes to a new realm of genetic marvels. “Right now it’s like being a kid in a candy warehouse,” said one geneticist. Others who looked at transposons and jumping genes as nuisances that were “messing things up” now see them as useful. Evolutionists are invoking the E word in various ways. Transposons might be a “major vehicle for evolutionary novelty,” said one, while another remarked about emerging new view of junk DNA, “It’s funny how quickly the field is now evolving.”
--------------------------------------------------------------------------------
1Xie et al, “Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites,” Proceedings of the National Academy of Sciences USA, 10.1073/pnas.0701811104, published online before print April 18, 2007.
2From the above paper, “CTCF, a protein containing 11 zinc-finger domains, is a major factor implicated in vertebrate insulator activities. An insulator is a DNA sequence element that prevents a regulatory protein binding to the control region of one gene from influencing the transcription of neighboring genes. When placed between an enhancer and a promoter, an insulator can block the interaction between the two. Several dozen insulator sites have been characterized, and almost all have been shown to contain CTCF binding sites. In some cases, the CTCF site has been directly shown to be both necessary and sufficient for enhancer blocking activities in heterologous settings. The known CTCF sites show considerable sequence variation, and no clear consensus sequence has been derived.”
It’s not funny. For decades, Darwinian preconceptions have held back a promising field of genetic research with their falsified notion that most of the genome is composed of evolutionary leftovers. Now that we see the design that was there all along, can we get on with what science should have been doing? Away with this new plot line that junk DNA is a source of “evolutionary novelty.” Darwinians, you have been exposed as usurpers. Get out of the way. The field is not evolving. Intelligent design is taking back its rights.